Patrice D. Cani

About Patrice D. Cani

Professor Patrice D. Cani is researcher from the Belgian Fund for Scientific Research (FRS-FNRS), group leader in the Metabolism and Nutrition research group at the Louvain Drug Research Institute (LDRI) from the Université catholique de Louvain (UCL), Brussels, Belgium, and WELBIO (Walloon Excellence in Lifesciences and BIOtechnology) investigator. He is currently member of several international associations, he is member of the Alumni College from the Royal Belgian Academy of Sciences, and he has been elected in the board of directors of the LDRI (UCL). Patrice D. Cani has a M.Sc. in Nutrition and another M.Sc. in health Sciences, he is registered dietitian and PhD in Biomedical Sciences. His main research interests are the investigation of the role of the gut microbiota in the development of metabolic disorders, such as obesity, type 2 diabetes and low grade inflammation. More specifically, he is investigating the interactions between the gut microbiota, the host and specific biological systems such as the endocannabinoid system and the innate immune system in the context of obesity, type 2 diabetes and metabolic inflammation. Prof Cani is author and co-author of more than 110 scientific research papers published in peer-reviewed international journals, conferences and book chapters.

New developments in genetics and metagenomics over the past 15 years have led scientists to produce an in-depth characterization of the composition and function of the gut microbiome as a novel organ in the close intersection between health and disease.

Gut microbiota, with its close links to metabolism and the immune system, could potentially be a factor that lies at the core of good health. This means it can be positioned at the heart of the processes that influence the risk of contracting different diseases.

A recent study (Chassaing, et al.) showed that two dietary emulsifiers -- carboxymethylcellulose and polysorbate-80 -- induced gut microbiota alteration and gut barrier dysfunction in mice, resulting in weight gain, low-grade inflammation, and metabolic disorders. While it is unlikely that

Numerous commensal bacteria present in the gut microbiota produce short chain fatty acids (SCFA’s) particularly acetate, butyrate and propionate. These SCFA’s have been associated with several biological effects upon host. Growing evidence suggests that specific microbes such as Faecalibacterium prausnitzii