Gut brain axis

Latest articles

It has long been known that the gut communicates with the brain via different pathways that include neuronal activation, the release of hormones and immune signals. Enteroendocrine cells (EECs)—scattered along the gastrointestinal tract between absorptive enterocytes—are involved in sensing luminal nutrients and bacteria and communicating this indirectly to the brain via the release of gut hormones (e.g. cholecystokinin). However, the…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

It has long been known that the gut communicates with the brain via different pathways that include neuronal activation, the release of hormones and immune signals. Enteroendocrine cells (EECs)—scattered along the gastrointestinal tract between absorptive enterocytes—are involved in sensing luminal nutrients and bacteria and communicating this indirectly to the brain via the release of gut hormones (e.g. cholecystokinin). However, the…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Our immune system fights pathogens, repairs wounded tissue and eliminates dead cells. It also acts to ensure we tolerate our own cells, food intake, and other environmental components, as well as the indigenous microbiota. In the presence of pathogenic invaders and other noxious insults, a resilient immune response is crucial to effectively eliminate the source of stimulation in a way…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Our immune system fights pathogens, repairs wounded tissue and eliminates dead cells. It also acts to ensure we tolerate our own cells, food intake, and other environmental components, as well as the indigenous microbiota. In the presence of pathogenic invaders and other noxious insults, a resilient immune response is crucial to effectively eliminate the source of stimulation in a way…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

The enteric nervous system (ENS) is involved in regulating gastrointestinal tract homeostasis through crosstalk between the brain, the gut microbiota, the endocrine and the immune system. Although in mice the ENS is mostly developed during embryogenesis and early postnatal life, recent research has found that it undergoes a dynamic renewal during adulthood. However, mechanistic studies on gut microbiota's role in…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

The enteric nervous system (ENS) is involved in regulating gastrointestinal tract homeostasis through crosstalk between the brain, the gut microbiota, the endocrine and the immune system. Although in mice the ENS is mostly developed during embryogenesis and early postnatal life, recent research has found that it undergoes a dynamic renewal during adulthood. However, mechanistic studies on gut microbiota's role in…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Previous data in animals and humans have shown the potential of manipulating the gut microbiome to modify emotional and cognitive behavior and brain function. For instance, Bifidobacterium longum 1714 has been tested for central effects in mice and humans, but studies assessing how probiotics may affect behavior and brain function in healthy volunteers are scarce. A new double-blind, placebo-controlled randomized…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.

Previous data in animals and humans have shown the potential of manipulating the gut microbiome to modify emotional and cognitive behavior and brain function. For instance, Bifidobacterium longum 1714 has been tested for central effects in mice and humans, but studies assessing how probiotics may affect behavior and brain function in healthy volunteers are scarce. A new double-blind, placebo-controlled randomized…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.
Twitter
News archive

Access from here to the chronological archive of news of this site

Access archive
Latest articles

It has long been known that the gut communicates with the brain via different pathways that include neuronal activation, the release of hormones and immune signals. Enteroendocrine cells (EECs)—scattered along the gastrointestinal tract between absorptive…

Our immune system fights pathogens, repairs wounded tissue and eliminates dead cells. It also acts to ensure we tolerate our own cells, food intake, and other environmental components, as well as the indigenous microbiota. In…

The enteric nervous system (ENS) is involved in regulating gastrointestinal tract homeostasis through crosstalk between the brain, the gut microbiota, the endocrine and the immune system. Although in mice the ENS is mostly developed during…

Previous data in animals and humans have shown the potential of manipulating the gut microbiome to modify emotional and cognitive behavior and brain function. For instance, Bifidobacterium longum 1714 has been tested for central effects…