A recent study, led by Dr. Catherine Stanton from the Teagasc Moorepark Food Research Centre and APC Microbiome Institute from the University College Cork in Cork (Ireland), has found that neurobehavioural changes induced by altering n-3 PUFA status are closely linked to alterations in gut microbiota composition and inflammation in mice.

Now a recent study, led by Dr. Nicola Santoro from the Department of Paediatrics at Yale University in New Haven, Connecticut (USA), has found that the gut microbiota of obese youth may drive a higher accumulation of energy than that of lean adolescents through an elevated production of short-chain fatty acids (SCFAs) and a higher capability to oxidize carbohydrates.

In a recent paper by Perry et al., researchers describe an investigation into the putative mechanisms by which gut microbiota alterations may lead to obesity, insulin resistance, and metabolic syndrome. Authors describe increased production of acetate by altered gut microbiota in rats. They link this to activation of the parasympathetic nervous system, increased glucose-stimulated insulin secretion, higher ghrelin secretion, hyperphagia, and obesity. Thus, they point to increased acetate production as a driver of metabolic syndrome.

A recent review, led by Dr Nuria Salazar from the Institute of Dairy Products of Asturias (Spain), belonging to the Spanish National Research Council, summarizes the up-to-date scientific evidence regarding the role of short-chain fatty acids (SCFAs) in host health and the impact of diet on their production.

Patrick Veiga and MetaHIT colleagues tested how fermented milks product could modulate microbiota. Using a metagenomics approach, they found that the abundance of unknown species increased in the gut when patients took the fermented milk product. Having access to the

Numerous commensal bacteria present in the gut microbiota produce short chain fatty acids (SCFA’s) particularly acetate, butyrate and propionate. These SCFA’s have been associated with several biological effects upon host. Growing evidence suggests that specific microbes such as Faecalibacterium prausnitzii

Go to Top