Category : Inflammation

Arterial stiffness—defined as the reduced capability of an artery to expand and contract in response to pressure changes—has been previously reported as an independent predictor of major adverse cardiovascular events in individuals with metabolic syndrome. However, it is poorly associated with traditional cardiovascular risk factors, including hyperlipidemia, diabetes mellitus, obesity and smoking. Furthermore, we do not know whether gut microbiome…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Arterial stiffness—defined as the reduced capability of an artery to expand and contract in response to pressure changes—has been previously reported as an independent predictor of major adverse cardiovascular events in individuals with metabolic syndrome. However, it is poorly associated with traditional cardiovascular risk factors, including hyperlipidemia, diabetes mellitus, obesity and smoking. Furthermore, we do not know whether gut microbiome…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Mice models are widely used to assess the impact of exposure to environmental factors such as chemicals, drugs or infectious agents on host homeostasis through modulation of the gut microbiota. A new study, led by Dr. Guodong Zhang from the University of Massachusetts (USA), has found that exposure to triclosan increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Triclosan…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Mice models are widely used to assess the impact of exposure to environmental factors such as chemicals, drugs or infectious agents on host homeostasis through modulation of the gut microbiota. A new study, led by Dr. Guodong Zhang from the University of Massachusetts (USA), has found that exposure to triclosan increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Triclosan…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Germ-free mice have been used widely during the last decade for studying the relevance and effect of resident bacteria on host physiology and pathology. Experimental data using animals with controlled gut colonization have identified three main primary functions of the gut microbiota: a) metabolic activities that result in salvage of energy and absorbable nutrients; b) protection of the host against…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.

Germ-free mice have been used widely during the last decade for studying the relevance and effect of resident bacteria on host physiology and pathology. Experimental data using animals with controlled gut colonization have identified three main primary functions of the gut microbiota: a) metabolic activities that result in salvage of energy and absorbable nutrients; b) protection of the host against…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.

The gut microbiota exerts a miscellany of protective, structural and metabolic effects on the intestinal mucosa. Although it is well recognized that the composition of the colonizing gut microbiota contributes to normal immunity by educating the host immune system on what to fight, little is known regarding how the gut microbiota, when dysregulated, can promote autoimmunity. A new study, led…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

The gut microbiota exerts a miscellany of protective, structural and metabolic effects on the intestinal mucosa. Although it is well recognized that the composition of the colonizing gut microbiota contributes to normal immunity by educating the host immune system on what to fight, little is known regarding how the gut microbiota, when dysregulated, can promote autoimmunity. A new study, led…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Sepsis is a life-threatening condition characterized by systemic inflammation; it is one of the major contributors to neonatal mortality, especially in developing countries. The World Health Organization (WHO) estimates that 1 million deaths per year (10% of all under-five mortality) are due to neonatal sepsis and that 42% of these deaths occur in the first week of life. Although exclusive…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.

Sepsis is a life-threatening condition characterized by systemic inflammation; it is one of the major contributors to neonatal mortality, especially in developing countries. The World Health Organization (WHO) estimates that 1 million deaths per year (10% of all under-five mortality) are due to neonatal sepsis and that 42% of these deaths occur in the first week of life. Although exclusive…

Paul Enck
Prof. Dr. Paul Enck, Director of Research, Dept. of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany. His main interests are gut functions in health and disease, including functional and inflammatory bowel disorders, the role of the gut microbiota, regulation of eating and food intake and its disorders, of nausea, vomiting and motion sickness, and the psychophysiology and neurobiology of the placebo response, with specific emphasis on age and gender contributions. He has published more than 170 original data paper in scientific, peer-reviewed journals, and more than 250 book chapters and review articles. He is board member/treasurer of the European Society of Neurogastroenterology and Motility and of the German Society of Neurogastroenterology and Motility, and has served as reviewer for many international journals and grant agencies.

A recent study led by Dr. Luis Fontana (Department of Biochemistry and Molecular Biology II and Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain) has found that administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 may downregulate gut inflammatory genes in obese rats. Rats were divided into various…

GMFH Editing Team
GMFH Editing Team

A recent study led by Dr. Luis Fontana (Department of Biochemistry and Molecular Biology II and Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Granada, Spain) has found that administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 may downregulate gut inflammatory genes in obese rats. Rats were divided into various…

GMFH Editing Team
GMFH Editing Team

Changes in the gut microbiota are involved in both homeostatic and inflammatory immune responses. T regulatory (Treg) immune cells tolerate diverse bacterial communities, whereas inflammatory conditions activate T effector (Teff) immune cells to react against the body’s own commensal microbiota. However, little is known regarding the role of commensal bacteria in inducing Teff cells during inflammation. A new study, led…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Changes in the gut microbiota are involved in both homeostatic and inflammatory immune responses. T regulatory (Treg) immune cells tolerate diverse bacterial communities, whereas inflammatory conditions activate T effector (Teff) immune cells to react against the body’s own commensal microbiota. However, little is known regarding the role of commensal bacteria in inducing Teff cells during inflammation. A new study, led…

Andreu Prados
Andreu Prados holds a Bachelor of Science Degree in Pharmacy & Human Nutrition and Dietetics. Science writer specialised in gut microbiota and probiotics, working also as lecturer and consultant in nutrition and healthcare. Follow Andreu on Twitter @andreuprados

Bacteria are responsive to the environment within the mammalian gut. Scientists have long desired to harness bacteria to detect disease or therapeutically influence the gut environment, but to date, synthetic genetic circuits in bacteria have proven susceptible to mutation and unpredictable function when they colonize the gut for an extended period of time. New work, led by Pamela Silver of…

Kristina Campbell
Science writer Kristina Campbell (M.Sc.), from British Columbia (Canada), specializes in communicating about the gut microbiota, digestive health, and nutrition. Author of the best selling Well-Fed Microbiome Cookbook, her freelance work has appeared in publications around the world. Kristina joined the Gut Microbiota for Health publishing team in 2014.  Find her on: GoogleTwitter

Bacteria are responsive to the environment within the mammalian gut. Scientists have long desired to harness bacteria to detect disease or therapeutically influence the gut environment, but to date, synthetic genetic circuits in bacteria have proven susceptible to mutation and unpredictable function when they colonize the gut for an extended period of time. New work, led by Pamela Silver of…

Kristina Campbell
Science writer Kristina Campbell (M.Sc.), from British Columbia (Canada), specializes in communicating about the gut microbiota, digestive health, and nutrition. Author of the best selling Well-Fed Microbiome Cookbook, her freelance work has appeared in publications around the world. Kristina joined the Gut Microbiota for Health publishing team in 2014.  Find her on: GoogleTwitter

Conditions that represent some of the leading causes of mortality worldwide—including obesity, diabetes, cardiovascular disease, and cancers—are linked with observable changes in the human gut microbiota. And many other chronic conditions, like inflammatory bowel disease, asthma and allergies, rheumatoid arthritis, and even myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), have also been linked with gut microbiota dysbiosis. Scientists and the public have…

Patrice D. Cani
Professor Patrice D. Cani is researcher from the Belgian Fund for Scientific Research (FRS-FNRS), group leader in the Metabolism and Nutrition research group at the Louvain Drug Research Institute (LDRI) from the Université catholique de Louvain (UCL), Brussels, Belgium, and WELBIO (Walloon Excellence in Lifesciences and BIOtechnology) investigator. He is currently member of several international associations, he is member of the Alumni College from the Royal Belgian Academy of Sciences, and he has been elected in the board of directors of the LDRI (UCL). Patrice D. Cani has a M.Sc. in Nutrition and another M.Sc. in health Sciences, he is registered dietitian and PhD in Biomedical Sciences. His main research interests are the investigation of the role of the gut microbiota in the development of metabolic disorders, such as obesity, type 2 diabetes and low grade inflammation. More specifically, he is investigating the interactions between the gut microbiota, the host and specific biological systems such as the endocannabinoid system and the innate immune system in the context of obesity, type 2 diabetes and metabolic inflammation. Prof Cani is author and co-author of more than 110 scientific research papers published in peer-reviewed international journals, conferences and book chapters.

Conditions that represent some of the leading causes of mortality worldwide—including obesity, diabetes, cardiovascular disease, and cancers—are linked with observable changes in the human gut microbiota. And many other chronic conditions, like inflammatory bowel disease, asthma and allergies, rheumatoid arthritis, and even myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), have also been linked with gut microbiota dysbiosis. Scientists and the public have…

Patrice D. Cani
Professor Patrice D. Cani is researcher from the Belgian Fund for Scientific Research (FRS-FNRS), group leader in the Metabolism and Nutrition research group at the Louvain Drug Research Institute (LDRI) from the Université catholique de Louvain (UCL), Brussels, Belgium, and WELBIO (Walloon Excellence in Lifesciences and BIOtechnology) investigator. He is currently member of several international associations, he is member of the Alumni College from the Royal Belgian Academy of Sciences, and he has been elected in the board of directors of the LDRI (UCL). Patrice D. Cani has a M.Sc. in Nutrition and another M.Sc. in health Sciences, he is registered dietitian and PhD in Biomedical Sciences. His main research interests are the investigation of the role of the gut microbiota in the development of metabolic disorders, such as obesity, type 2 diabetes and low grade inflammation. More specifically, he is investigating the interactions between the gut microbiota, the host and specific biological systems such as the endocannabinoid system and the innate immune system in the context of obesity, type 2 diabetes and metabolic inflammation. Prof Cani is author and co-author of more than 110 scientific research papers published in peer-reviewed international journals, conferences and book chapters.